GCE AS/A level

WJEC
0976/01

MATHEMATICS - C4
 Pure Mathematics

A.M. THURSDAY, 13 June 2013
$11 / 2$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The function f is defined by

$$
f(x)=\frac{6+x-9 x^{2}}{x^{2}(x+2)} .
$$

(a) Express $f(x)$ in terms of partial fractions.
(b) Using your result to part (a),
(i) find an expression for $f^{\prime}(x)$,
(ii) verify that $f(x)$ has a stationary value when $x=2$.
2. Find the equation of the normal to the curve

$$
x^{3}-2 x y^{2}+y^{3}=5
$$

at the point $(2,1)$.
3. (a) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
8 \cos 2 \theta+6=\cos ^{2} \theta+\cos \theta \tag{6}
\end{equation*}
$$

(b) Express $\sqrt{15} \cos \theta-\sin \theta$ in the form $R \cos (\theta+\alpha)$, where R and α are constants with $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
Hence find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
\sqrt{15} \cos \theta-\sin \theta=3 . \tag{6}
\end{equation*}
$$

4. The region R is bounded by the curve $y=\sin 2 x$, the x-axis and the lines $x=\frac{\pi}{6}, x=\frac{\pi}{2}$.

Find the volume generated when R is rotated through four right angles about the x-axis. Give your answer correct to three decimal places.
5. (a) (i) Expand $(1+6 x)^{\frac{1}{3}}$ in ascending powers of x up to and including the term in x^{2}.
(ii) State the range of values of x for which your expansion is valid.
(b) Use your expansion in part (a) to find an approximate value for one root of the equation

$$
\begin{equation*}
2(1+6 x)^{\frac{1}{3}}=2 x^{2}-15 x \tag{2}
\end{equation*}
$$

6. The curve C has the parametric equations

$$
x=a t, y=\frac{b}{t},
$$

where a, b are positive constants.
The point P lies on C and has parameter p.
(a) Show that the equation of the tangent to C at the point P is

$$
\begin{equation*}
a p^{2} y+b x-2 a b p=0 \tag{5}
\end{equation*}
$$

(b) The tangent to C at the point P meets the x-axis at the point A and the y-axis at the point B. Find the area of triangle $A O B$, where O denotes the origin. Give your answer in its simplest form.
(c) The point D has coordinates $(2 a, b)$. Show that there is no point P on C such that the tangent to C at the point P passes through D.
7. (a) Find $\int(3 x-1) \cos 2 x \mathrm{~d} x$.
(b) Use the substitution $u=2 x+1$ to evaluate

$$
\begin{equation*}
\int_{0}^{1} \frac{x}{(2 x+1)^{3}} \mathrm{~d} x . \tag{5}
\end{equation*}
$$

8. Part of the surface of a small lake is covered by green algae. The area of the lake covered by the algae at time t years is $A \mathrm{~m}^{2}$. The rate of increase of A is directly proportional to \sqrt{A}.
(a) Write down a differential equation satisfied by A.
(b) The area of the lake covered by the algae at time $t=3$ is $64 \mathrm{~m}^{2}$ and the area covered at time $t=5.5$ is $196 \mathrm{~m}^{2}$. Find an expression for A in terms of t.

TURN OVER

9. The position vectors of the points A and B are given by

$$
\begin{aligned}
& \mathbf{a}=-\mathbf{i}+3 \mathbf{j}-7 \mathbf{k}, \\
& \mathbf{b}=7 \mathbf{i}-\mathbf{j}+5 \mathbf{k},
\end{aligned}
$$

respectively.
(a) Write down the vector $\mathbf{A B}$.
(b) The point C lies on the line $A B$ and is such that $A C: C B=3: 1$. Find the position vector of C.
(c) The vector equation of the line L is given by

$$
\mathbf{r}=-\mathbf{i}+\mathbf{j}+11 \mathbf{k}+\lambda(-4 \mathbf{i}+\mathbf{j}+3 \mathbf{k})
$$

(i) Find the vector equation of the line parallel to L which passes through A.
(ii) Verify that B is in fact the foot of the perpendicular from A to L.
10. Prove by contradiction the following proposition.

When x is real,

$$
(5 x-3)^{2}+1 \geqslant(3 x-1)^{2}
$$

The first line of the proof is given below.
Assume that there is a real value of x such that

$$
\begin{equation*}
(5 x-3)^{2}+1<(3 x-1)^{2} \tag{3}
\end{equation*}
$$

